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SUMMARY
~030

The expression for the energy received from a signal reflect-
ed from the corona is derived on the basis of the Gaussian distribu-
tion of the probability of radiowave scattering on the inhomogeneities
of electron density. The scattering at the point of integral inné;'
reflection is not considered. The possibility of determining the sta-
tirtical distribution function of inhomogeneities is investigated,

takirg into account that the gignal, reflected from the corona,

a Doprler contour. d@' L6')

* *

One of the important factors determining the intensity of
the reflected signal at location of the corona is the characteristic
of distribution of electron density inhomogeneities as a function of
the radius.

Let us examine the character of radiowave propagation in the
corona at location from the ground (Fig.1l). The possibility of geo-~
tric optics' approximation is substantiated in [1]. For the aiming
distance we take the quantity a= Pde, where f is the distance from

the antenna to the point of integral inner reflection in the corona;j

* O RADIOLKATSII SOLNTSA
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© is the angle between the radioray and the central axis.

The totsl refraction of the radiorasy is determined by formula

a
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(see ref.[2]), where n(r,) is the value of the index of refraction
at the point of total inner refraction; r is the distance from the
center of the Sun to the trajectory element. The absorption is taken

into account by the formula
= S % dS

where X is the absorption coefficient.

Since in polar coordinates dS = ydr> +r’d8* and, besides,

=22 Ty, (2)

where i is the angle between the tangent to the ray and the normal to
the surface of ecusl values of n, © is the angle between the central
a¥yis and the vector r., we obtain

dS == dr[1 — (a?/n2r?)]-"h - (3)

Let us investigate tie intensity distribution of the reflected
sigiel on the inner surface of the sphere, conducted through a trans-
mitting antenna and having a2 radius of the order of maznitude of
(Fig.1).

We estimate in the first approximation that the corona has
a spherically symmetric structure without inhomogeneities.
Let us fix the corona element in the form of a spherical belt

of surface -
dSy = 2nada. )

This element is projected on the inner surface of the sphere
in the form of the belt dSZaLet us determine the area of this project-
ion. From the triangle NPQ we have

P'Q = hy = a + psin [n — R(a)— dB] =~ a — p sin R(a)+ a cos R(a), (5)
PN = hy = p cos [n — R(a) — d0] == —p cos R(a) + asin R(a).
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Differentiating hl and h2 over a from the triangle LQS, we
find (QL = gH)

aH — (dh + dh?)' = [(pR’ cos R + 2(cos zR)? — aR’ sin R)? +
- (pR’ sinR4-sin B+ aR’ cos R)’]‘hda.
Here R =R (a), R'=dR(a)/da. Then the area d5, =2 hyjdHE is

dSzz2u(a+psinR+acosR){[(pcosR-—asinR)R’+ A (6)
+ 2(cos />R)?]? + [(p sin R + a cos R)R’ + sin R]?}":da = 2nz(a)da.

The reflection of the object is characterized by the effective

crosc section &, and, at the same time, we have in the geometric appro-
ximation L[3]
6 = lim 4n/2 (P, | Py), 7
l-+00

where 'Pr is the density of the scattered energy flux of radiowavee at
the distance | from the scatterer; Pi is the density of energy flux

of the wave incident in the region of the object. In the case considered
(cee Fig, 1)

oa/oo



P, dS, . R(a) __, ,dS_. R(a)
P, ds, sin — 6 = 4np a-s,;sm —5
Substituting the values of dSl_and dSZ’ we find
2 2 . -R {a} .
¢ = 4np ) sin —5— (8)

The expression for the energy of the received signal (the radar

formula) has the form

( 4,!)39‘ * (9)

where G 1is the directional factor of the transmitting antennaj; A is
the effective area of the receiving antenna; Pgyis the transmitter's
energy.

The intensity of the reflected signal in an arbitrary point of
the sphere will be cetermined, taking into account (8) and (9), as a

function of the airing distance a.

__ GPoa exp [— 1o (a)] & R (a)
I(a) = T2 (3 2 sin 5

(10)

In deriving (10), we did not take into account the scattering
of radioawaves over the irhomogeneities of corona's electron density. -
We prezume the absence of sharp gardients of the reiractive index in the
corona, and we determine the effect of irhomogeneities on the wave front
deflection, determined by the laws of geometric optics. Irom the calcu-
lation of Chadraseckhar [4] the root-mean-square value of the angle of
scattering in a medium with statistically irregular distribution of the
refractive index and a correlation function of the form exp (—AS?/Am?)

is determined by the expression

— s __
@ = $(S)VdS), $(S) = 2YI1An(S)Amy(S)~*. (11)
An (S) is the root-mean-square value of the deflection of the refractive
index from the unity in a single inhomogeneity; AJ%)(S) are the mean-

scucre dimensions of s sinrle inhomogeneity. The root-mean-square value




of the scattering an-le alonn t:e whole trajectory has the form

r({n=1)

(@) =2 +SA ¥ (S) ds]"’.

(12)

The integration is effected to certain small vicinity of the

point r, . Substituting the value of dS from (3), we have
r(n=1)

D (a) = [2 S ‘P’(")(T:;ffm]%- (13)

retAr
Let us consider a beam of rays near the central axis, incident

upon the element of the corona dS; = 2xada(Fig.l). Upon reflection a
according to the laws of geometric optics from this spherical belt,
radiorays are projected on a similar element lying on the inner surface
of the sphere with an area dS, =2xz (a)da. Because of scattering on
the inhomogeneities, a probability, distinct from zero, of wave front
rotation by an angle R(a) =% —R(a). Since the intensity is pro-
portional to the probability, one may estimate the energy of the signsl
reflected from the element dSl, and received by the receiving antenna.
The effective cross section for this element is determined by the

exypression

s =4ﬂp’i—'§—: sin & é“) W (a), (14)

where W (a) is the probability of deflection by the angle R (a).
Then, the density of signal intensity in the region of the disposition
of the transmitting antenna at the expense of reflection from the corona

element dSl will be determined by the expression

1(a)= P °Z£p£;:)°(“)] a sin Réa)W(a) 2nhyda. (15)

At the same time, account was taken of the equations (%), (6)
and (9), Accordingly, the expression for the energy of reception of

the signal reflected from the whole corona will take the form

_ GRPQ‘Ji'a exp [—

F= 2p* z(a)

%0 () gin (R (a)/2) W (a) da, (16)
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where AO is the radius of the diameter of corona scattering, found
experimentally.

Vie shall take as Gaussian the probability distribution of ray
angle's reflection from the geometrico-optical direction because of
scattering over the inhomogeneities. As is noted in [5], the applica-

tion of the latter is possible at filfillment of the condition

AmgS> AL, (17)
where L ie the optical patu of the rsdioray in the corona; A, is the
wavelength.
If we zsrume thst coronezl rays are scattering objects, we have
An¥”? -~ 10° xn (6], and therefore the condition (17) can be considered

o
as satisfied. Taking into account (12), we have

R
W (a) = m;o @ epx [—2_(1)(:7)] , (18)

where ¢ is determined from the condition of normalization; at the same
time we admit that for rays with a small aiming distance a the scatter-

ing indicatrix in the plane perpendicular to the propagation direction

{2 (~sor) #]

Substituting the two last expressions into (16) and taking

is a circle., Then

iy

c=[V

O,

—~
Q
S

into account (12), we find

_ GAP, " ahy exp [— T (a)] . R(a) (" —¢® dé)—lexp Ra) 0
F= lmp’§ z(a) it =y §°‘p o “ i¥ (19)
' r(n=1)
Y = S \p’(s)ds. (20)
rot+Ar

As a result of the experiment, the quantity F is known, and

it is now required to find the function W (s), which involves considerable



difficulties. The problem will be simplified if the energy spectrum, con-
ditioned by the Doppler effect, is known.
Let us consider the spectral characteristic of the received sig-

nal. The expression for the electric component has the form

E (t) = E, cos (0ot + @o) + ZE- cos (o, + i),

where W;, ¥, are the circular freouency and the carrier phase; &, ¥, are
the circular frecuency and the phase of the fringe Doppler spectrum
without' Sun's emission and noises; t is the time.

Let us introduce into the consideration the cuantity
(m.—wo)/2ﬂ=fs=foj:2v/3\o:t203/7\0, (21)
where UV is the chaotic velocity along the visual ray on account of
fluctuaticns; v; is the component of the constant velocity along the vi-

sual ray because of Sun's rotation. Vie neglect the chaotic velocity and
also the differential rotation by latitude.

Let us examine the rotation of
the Sun around the axis XZ (Fig.,2).
and outline an element of the corona
in the form of a spherical belt. The
upper part of the belt is shown in
Fig, 2 . The plane ACBD is equatorial.
Assume that the point of totsl inner
reflection lies in this plane; then
the incident ray PX and the reflect-
ed one KQ lie also in the eguatorial
plane, In reality, because of spheri- Fig, 2
cal stratification of the corona, the
trajectory of the radioray cannot be represented by a straight line,
but in the case considered, the interest is centered on the angle of
refraction; it thus is appropriate to admit such a simplification.

e shall take the velocity of the point K because of corona rotation



equal to Vy . Then, as may be seen from Fig. 2, t»~ veloecity along this
point's visual ray will be

vsk = Vi sinlfe[nn — R(a)] = Vi cos 1/.R(a). (22)-

An analogous expression will take place for the radial velocity
of the point N, 1lying in the equatorial plane, with the ‘différence,
however, ‘that the angle of refraction will be function of the aiming
distance a', different from a . Assume that the point L 1lies on the
meridian passing through N. Since the velocity vectors of these points
lie in parallel planes and coincide in direction, the radial velocity
of the point L is

vsL = Vi cosiaR(a’). (23)

Let us denote OL= ON= R, ; O'L=0'K = a, LLOX--S 110 =g ;
at the same time, because of the smallness of the corona scattering
diameter relative to the total area, we may admit Ry = const. Then, it
is easy to find from the triangles EIM, O'IM, RON

_acosp
sinf °

RN =a’ (24)

From the triangles OIM and O'IM we find cos f = (a/R,) sin foo
Substituting the value found in (23), we find

2= a cos pR,
" (Ro*— a®sin? p)%’

(25)

Let us determine the value of the velocity of the point L,
admitting the corona rotation with an angular velocity . Then V. =rQ.
Since r' =0M= R,sin P, we have

= Q(Ret — a%sin?p)'h. (%)

Substituting the last exprecsion into (24), we find the value
of the radial velocity of an arbitrary point of the corona as a function
of the variables a, P

vs = Q(R? — a2 sin? p) " cos 2[R (a, p)], (27)
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where R = R(a, ’;,), taking into account (1) and (25), will be determined

by the expression

"(:') r / a2 anc? u R \ 1 2ha eo

R= —23‘., } l.(Ro’ — a? sin® p) knﬁri o sxn’ p)J 5; .

The expression for the frequency shift function as a consequence
of the Doppler effect (21) will take the form

o= fack 3 (Ret —a® sin® s cos 1 (R (a, ). (28)

Let us assign ourselves a certain interval of variables a and ‘f
within the limits a, a +da and r., o+ d’b; then, the differential
function (28) will take the form

2Q ([ a sin®p cos /3 [R(a, p)] , (R —a®sin?u)» . R(a, p) .
dfs =F Ao {[ (R,*— a® sin*p)% + ) sin —p— X
. dR (a, p) a®sin®p cos p R(a,p)
X —da —] da+ [(R.,z T A S
(R* —a?sin® w)'s . R(a, p)dR(a, u’]
4 22 5 sin — i (29)

To this interval da and d‘,;. corresponds a corona area dSl._ adadib

and the screen area dS) = g (a)dady , whence

s(a) = 4up"di§—:-,— , sin Rz(a) W (a). (30)

Applying the theorem on the average, we find the reception energy
of the signal reflected from dS'/, taking into account (9), (12) and (18),
and also the denotations (20)

G AP, exp (— o (a)l a-h,- dp. R(a)
8"z () 2 X

[§ { e }de]'_ exp {—E,f“;,)'} da. (31)‘

Several such equations can be composed for various intervals da

dF (a) k_

and d|~. If the energy frequency spectrum of the received signal is
known, the left-hand parts of these equations may be determined from the
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Doppler contour upon preliminary calculation of frequency accretion
from the expression (29). Thus arises the possibility of determining the
distribution function of inhomogeneities. Let us represent this function
in the form ' v$?(r) =1%o+ Yir+ ¢ as was admitted in [2]. Substituting
this expression into (31) and taking into account (3), (6), we find

2
dF (@) =T (a) exp ,ﬂ(a() )(Se xP Zor- de) @)
Here T ("1) GAP., exp (— 'roltgga a-dp-sin l/,RL

x {[(p cos R (a) —a sin R (a)) R’ (a) + 2(cos V1R (a»=1=+'

+ [(p sin R (a) 4 a cos R (a)) R*(a) + sin R( )y
0 (a) = Yo (a) 4 ¥iB (a) + P2 7 (a),

r(in=1) r(n=1)

dr rdr
2@= )\ a=aryre PO= ") a—amry
rin=y) n(re)
r*dr = dn a
0=\, amap RO=m42 | S

The last quantities can be computed by the numerical method, pro-

vided the denendence n (r) is given. Let us denote the expression

Woa(a) + PiB(a) + $v(a) = X(a).
Then the expression (32) will take the form

R(a) (f_ —8\1_ T(a)exp(— R¥a)/4X (@) 44
dF (a) = T (a) exp {-— 4X(a)} (g’exp 4X—(a)) = 2VE @ erf () .(33)

Let us assign ouselves the discrete value of a in the interval
0 <a < A, Then, upon taking the logarithm, we obtain from (33) a system
of transcendential equations of the form

T(a)) _ R ay -
dF( ?ai) = 4X(za3) +1n erf (1) + 0 2V X(ay),

T R? —
dF(Fa’z) 4X(z2) +Inerf(7)+ In2 VX (as), (34)

In

In

Varying a in the system (34), it is necessary to take into

account that the loss of information will decrease with the decrease of
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intervals between the discrete a. Resolving this system relative to X (a),
we shall obtain a system of the form
Xﬁai) = Yoa(as) + $1B(ar) + ey (ai),
X (a2) = ow(az) + biB(a2) + $2v(a2),

The constants Vo, ¥1, ¥2 can be determined from the last system
by the method of least squares, which will provide the possibility of
estimating the statistical distribution function of inhomogeneities W(r).

In conclusion, I am grateful to V.M, Polyakov for his interest
in this work and his remarks, and also to I.S.Shklovskiy, for presenting
the theme.

+sx3 THE END s2s
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